特殊函数三角函数值有哪些?
特殊三角函数值一般指在30°,45°,60°等角的三角函数值。这些角度的三角函数值是经常用到的。并且利用两角和与差的三角函数公式,可以求出一些其他角度的三角函数值。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
三角函数起源:
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。
喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。梅涅劳斯在他的著作《球面学》中使用了正弦来描述球面的梅涅劳斯定理。
古希腊三角学与其天文学的应用在埃及的托勒密时代达到了高峰,托勒密在《数学汇编》(Syntaxis Mathematica)中计算了36度角和72度角的正弦值,还给出了计算和角公式和半角公式的方法。托勒密还给出了所有0到180度的所有整数和半整数弧度对应的正弦值。
以上内容参考 百度百科-特殊三角函数数值
1. 正弦函数(sine):在单位圆上,正弦函数的值表示一个角的对边长度与斜边长度之比。一些特殊角的正弦函数值如下:
- 正弦函数值在 $0$ 度、$180$ 度和 $360$ 度等整数倍角时等于 $0$,即 $\sin(0) = \sin(180) = \sin(360) = 0$。
- 正弦函数在 $30$ 度角时等于 $1/2$,即 $\sin(30) = 1/2$。
- 正弦函数在 $45$ 度角时等于 $1/\sqrt{2}$,即 $\sin(45) = 1/\sqrt{2}$。
- 正弦函数在 $60$ 度角时等于 $\sqrt{3}/2$,即 $\sin(60) = \sqrt{3}/2$。
- 正弦函数的值在 $90$ 度和 $270$ 度等奇数倍角时等于 $1$ 或 $-1$,即 $\sin(90) = \sin(270) = 1$,$\sin(180) = \sin(360) = -1$。
2. 余弦函数(cosine):在单位圆上,余弦函数的值表示一个角的邻边长度与斜边长度之比。一些特殊角的余弦函数值如下:
- 余弦函数值在 $0$ 度和 $360$ 度等整数倍角时等于 $1$,即 $\cos(0) = \cos(360) = 1$。
- 余弦函数在 $30$ 度角时等于 $\sqrt{3}/2$,即 $\cos(30) = \sqrt{3}/2$。
- 余弦函数在 $45$ 度角时等于 $1/\sqrt{2}$,即 $\cos(45) = 1/\sqrt{2}$。
- 余弦函数在 $60$ 度角时等于 $1/2$,即 $\cos(60) = 1/2$。
- 余弦函数的值在 $90$ 度和 $270$ 度等奇数倍角时等于 $0$,即 $\cos(90) = \cos(270) = 0$。
3. 正切函数(tangent):正切函数的值表示一个角的对边长度与邻边长度之比。一些特殊角的正切函数值如下:
- 正切函数的值在 $0$ 度和 $180$ 度等整数倍角时等于 $0$,即 $\tan(0) = \tan(180) = 0$。
- 正切函数在 $45$ 度角时等于 $1$,即 $\tan(45) = 1$。
- 正切函数的值在 $90$ 度和 $270$ 度等奇数倍角时不存在,即 $\tan(90)$ 和 $\tan(270)$ 无定义。
需要注意的是,三角函数的输入一般使用弧度制。例如,$30$ 度对应的弧度值为 $\pi/6$。
1. 正弦函数(sin)的特殊函数值:
- sin(0) = 0
- sin(π/6) = 1/2
- sin(π/4) = √2/2
- sin(π/3) = √3/2
- sin(π/2) = 1
2. 余弦函数(cos)的特殊函数值:
- cos(0) = 1
- cos(π/6) = √3/2
- cos(π/4) = √2/2
- cos(π/3) = 1/2
- cos(π/2) = 0
3. 正切函数(tan)的特殊函数值:
- tan(0) = 0
- tan(π/6) = 1/√3
- tan(π/4) = 1
- tan(π/3) = √3
- tan(π/2) = 无穷大(不存在)
这些特殊函数值在解三角方程、化简三角式以及计算三角函数的值时经常用到。还有其他一些特殊函数值,如余切函数(cot)、正割函数(sec)和余割函数(csc)等,它们也有一些特殊角度对应的特殊函数值。
2023-05-18
1. sin(0) = 0:正弦函数在角度为0时的值为0。
2. sin(π/6) = 1/2:正弦函数在角度为π/6(或30°)时的值为1/2。
3. sin(π/4) = 1/√2:正弦函数在角度为π/4(或45°)时的值为1/√2。
4. sin(π/3) = √3/2:正弦函数在角度为π/3(或60°)时的值为√3/2。
5. sin(π/2) = 1:正弦函数在角度为π/2(或90°)时的值为1。
除了正弦函数,余弦函数和正切函数也存在一些特殊的函数值,如下所示:
1. cos(0) = 1:余弦函数在角度为0时的值为1。
2. cos(π/6) = √3/2:余弦函数在角度为π/6(或30°)时的值为√3/2。
3. cos(π/4) = 1/√2:余弦函数在角度为π/4(或45°)时的值为1/√2。
4. cos(π/3) = 1/2:余弦函数在角度为π/3(或60°)时的值为1/2。
5. cos(π/2) = 0:余弦函数在角度为π/2(或90°)时的值为0。
1. tan(0) = 0:正切函数在角度为0时的值为0。
2. tan(π/6) = 1/√3:正切函数在角度为π/6(或30°)时的值为1/√3。
3. tan(π/4) = 1:正切函数在角度为π/4(或45°)时的值为1。
4. tan(π/3) = √3:正切函数在角度为π/3(或60°)时的值为√3。
5. tan(π/2) = 无穷:正切函数在角度为π/2(或90°)时的值为无穷。
这些特殊函数值在三角函数的计算和应用中经常被使用,熟悉它们可以方便我们进行相关数学计算和推导