证明偏导数存在是什么意思?
这类问题一般都是证明在某点处偏导数存在,注意这时切记不能使用求导公式,以一元函数为例,这是因为用求导公式计算出来的导函数f'(x)往往含有间断点,在间断点x0处f'(x)无意义,但这不意味着f'(x0)一定不存在;
例如f(x)=(x^2)sin(1/x) x≠0=0 x=0可以验证在可去间断点x=0处,导函数f'(x)无意义,但f'(0)=0存在。
在确定某点处偏导数存在的基础上,往往还要讨论偏导数在该点是否连续,这时才是用求导公式的时候,用求导公式计算出导函数f'x(x,y),这是一个关于x和y的二元函数,求(x0,y0)处二元函数f'x(x,y)的极限,如果这个极限存在且等于该点处的偏导数值,则偏导数连续,否则不连续。
x方向的偏导
设有二元函数 z=f(x,y) ,点(x0,y0)是其定义域D 内一点。把 y 固定在 y0而让 x 在 x0 有增量 △x ,相应地函数 z=f(x,y) 有增量(称为对 x 的偏增量)△z=f(x0+△x,y0)-f(x0,y0)。
如果 △z 与 △x 之比当 △x→0 时的极限存在,那么此极限值称为函数 z=f(x,y) 在 (x0,y0)处对 x 的偏导数,记作 f'x(x0,y0)或函数 z=f(x,y) 在(x0,y0)处对 x 的偏导数,实际上就是把 y 固定在 y0看成常数后,一元函数z=f(x,y0)在 x0处的导数。