已知正实数a与b满足a+b=1,求a/(1+b)+b/(1+a)的最大值或最小值.
1个回答
展开全部
解
通分有
a/(1+b)+b/(1+a)=(a+a^2+b+b^2)/(1+a+b+ab)
将a+b=1和a^2+b^2=(a+b)^2-2ab=1-2ab带入上式
上式=(2-2ab)/(2+ab)
=[-2*(2+ab)+6]/(2+ab)
=-2+6/(2+ab)
而1=a+b>=2√(ab)
所以ab=-2+6/(2+1/4)=2/3
所以 最小值为2/3 当a=b=1/2取到
又ab>0
所以上式
通分有
a/(1+b)+b/(1+a)=(a+a^2+b+b^2)/(1+a+b+ab)
将a+b=1和a^2+b^2=(a+b)^2-2ab=1-2ab带入上式
上式=(2-2ab)/(2+ab)
=[-2*(2+ab)+6]/(2+ab)
=-2+6/(2+ab)
而1=a+b>=2√(ab)
所以ab=-2+6/(2+1/4)=2/3
所以 最小值为2/3 当a=b=1/2取到
又ab>0
所以上式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询