为什么两个奇函数的和是奇函数?为什么两个奇函数的积是偶函数呢?
1个回答
展开全部
已知:函数y=f(x)在区间D上是奇函数,函数y=g(x)在区间D上是奇函数.求证:(1)F(x)=f(x)+g(x)是奇函数.(2)G(x)=f(x).g(x)是偶函数。
证明:(1)函数F(x)=f(x)+g(x)的定义域为D,当x∈D时,-x∈D.
∵f(x)在区间D上是奇函数,函数y=g(x)在区间D上是奇函数,
∴对任意x∈D有
f(-x)=-f(x),g(-x)=-g(x)成立,
∴F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)
即对任意x∈D有 F(-x)=-F(x)成立。
故F(x)为奇函数。
所以两个奇函数的和是奇函数。
(2))函数F(x)=f(x)+g(x)的定义域为D,当x∈D时,-x∈D.
∵f(x)在区间D上是奇函数,函数y=g(x)在区间D上是奇函数,
∴对任意x∈D有
f(-x)=-f(x),g(-x)=-g(x)成立,
∴G(-x)=f-(x).g(-x)=[-f(x)].[-g(x)]=f(x).g(x)=G(x)
即对任意x∈D有 G(-x)=G(x)成立。
故G(x)为偶函数。
所以两个奇函数的积是偶函数。
证明:(1)函数F(x)=f(x)+g(x)的定义域为D,当x∈D时,-x∈D.
∵f(x)在区间D上是奇函数,函数y=g(x)在区间D上是奇函数,
∴对任意x∈D有
f(-x)=-f(x),g(-x)=-g(x)成立,
∴F(-x)=f(-x)+g(-x)=-f(x)-g(x)=-[f(x)+g(x)]=-F(x)
即对任意x∈D有 F(-x)=-F(x)成立。
故F(x)为奇函数。
所以两个奇函数的和是奇函数。
(2))函数F(x)=f(x)+g(x)的定义域为D,当x∈D时,-x∈D.
∵f(x)在区间D上是奇函数,函数y=g(x)在区间D上是奇函数,
∴对任意x∈D有
f(-x)=-f(x),g(-x)=-g(x)成立,
∴G(-x)=f-(x).g(-x)=[-f(x)].[-g(x)]=f(x).g(x)=G(x)
即对任意x∈D有 G(-x)=G(x)成立。
故G(x)为偶函数。
所以两个奇函数的积是偶函数。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询