高考数学复合函数知识点归纳

 我来答
名成教育17
2022-07-26 · TA获得超过5495个赞
知道小有建树答主
回答量:268
采纳率:0%
帮助的人:71.7万
展开全部

  不是任何两个函数都可以复合成一个复合函数,只有当Mx∩Du≠?时,二者才可以构成一个复合函数。下面是我为大家精心推荐数学复合函数知识点 总结 ,希望能够对您有所帮助。

   高考数学复合函数知识点归纳

   1.复合函数定义域

  若函数y=f(u)的定义域是B,u=g(x)的定义域是A,则复合函数y=f[g(x)]的定义域是

  D={x|x∈A,且g(x)∈B} 综合考虑各部分的x的取值范围,取他们的交集。

  求函数的定义域主要应考虑以下几点:

  ⑴当为整式或奇次根式时,R的值域;

  ⑵当为偶次根式时,被开方数不小于0(即≥0);

  ⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;

  ⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。

  ⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。

  ⑹分段函数的定义域是各段上自变量的取值集合的并集。

  ⑺由实际问题建立的函数,除了要考虑使解析式有意义外,还要考虑实际意义对自变量的要求

  ⑻对于含参数字母的函数,求定义域时一般要对字母的取值情况进行分类讨论,并要注意函数的定义域为非空集合。

  ⑼对数函数的真数必须大于零,底数大于零且不等于1。

  ⑽三角函数中的切割函数要注意对角变量的限制。

  注:设y=f(u)的最小正周期为T1,μ=φ(x)的最小正周期为T2,则y=f(μ)的最小正周期为T1_2,任一周期可表示为k_1_2(k属于R+)

   2.复合函数单调性

  依y=f(u),μ=φ(x)的单调性来决定。即“增+增=增;减+减=增;增+减=减;减+增=减”,可以简化为“同增异减”。

  ⑴求复合函数的定义域;

  ⑵将复合函数分解为若干个常见函数(一次、二次、幂、指、对函数);

  ⑶判断每个常见函数的单调性;

  ⑷将中间变量的取值范围转化为自变量的取值范围;

  ⑸求出复合函数的单调性。

  三角函数诱导公式记忆口诀

  “奇变偶不变,符号看象限”。“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。以cos(π/2+α)=-sinα为例,等式左边cos(π/2+α)中n=1,所以右边符号为sinα,把α看成锐角,所以π/2<(π/2+α)<π,y=cosx在区间(π/2,π)上小于零,所以右边符号为负,所以右边为-sinα。

  三角函数诱导公式大全

  公式一:设α为任意角,终边相同的角的同一三角函数的值相等:

  sin(2kπ+α)=sinα(k∈Z)

  cos(2kπ+α)=cosα(k∈Z)

  tan(2kπ+α)=tanα(k∈Z)

  cot(2kπ+α)=cotα(k∈Z)

  公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:

  sin(π+α)=-sinα

  cos(π+α)=-cosα

  tan(π+α)=tanα

  cot(π+α)=cotα

  公式三:任意角α与-α的三角函数值之间的关系(利用原函数奇偶性):

  sin(-α)=-sinα

  cos(-α)=cosα

  tan(-α)=-tanα

  cot(-α)=-cotα

  公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:

  sin(π-α)=sinα

  cos(π-α)=-cosα

  tan(π-α)=-tanα

  cot(π-α)=-cotα

  公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:

  sin(2π-α)=-sinα

  cos(2π-α)=cosα

  tan(2π-α)=-tanα

  cot(2π-α)=-cotα

  公式六:π/2±α与α的三角函数值之间的关系:

  sin(π/2+α)=cosα

  sin(π/2-α)=cosα

  cos(π/2+α)=-sinα

  cos(π/2-α)=sinα

  tan(π/2+α)=-cotα

  tan(π/2-α)=cotα

  cot(π/2+α)=-tanα

  cot(π/2-α)=tanα

  推算公式:3π/2±α与α的三角函数值之间的关系:

  sin(3π/2+α)=-cosα

  sin(3π/2-α)=-cosα

  cos(3π/2+α)=sinα

  cos(3π/2-α)=-sinα

  tan(3π/2+α)=-cotα

  tan(3π/2-α)=cotα

  cot(3π/2+α)=-tanα

  cot(3π/2-α)=tanα

  两角和差公式

  sin(α+β)=sinαcosβ+cosαsinβ

  sin(α-β)=sinαcosβ-cosαsinβ

  cos(α+β)=cosαcosβ-sinαsinβ

  cos(α-β)=cosαcosβ+sinαsinβ

  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)

  二倍角的正弦、余弦和正切公式

  sin2α=2sinαcosα

  cos2α=cos2(α)-sin2(α)=2cos2(α)-1=1-2sin2(α)

  tan2α=2tanα/[1-tan2(α)]

  tan[(1/2)α]=(sinα)/(1+cosα)=(1-cosα)/sinα

  半角的正弦、余弦和正切公式

  sin2(α/2)=(1-cosα)/2

  cos2(α/2)=(1+cosα)/2

  tan2(α/2)=(1-cosα)/(1+cosα)

  tan(α/2)=(1—cosα)/sinα=sinα/1+cosα

  万能公式

  sinα=2tan(α/2)/[1+tan2(α/2)]

  cosα=[1-tan2(α/2)]/[1+tan2(α/2)]

  tanα=[2tan(α/2)]/[1-tan2(α/2)]

  三倍角的正弦、余弦和正切公式

  sin3α=3sinα-4sin3(α)

  cos3α=4cos3(α)-3cosα

  tan3α=[3tanα-tan3(α)]/[1-3tan2(α)]

  三角函数的和差化积公式

  sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]

  sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]

  cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]

  cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

  三角函数的积化和差公式

  sinα·cosβ=0.5[sin(α+β)+sin(α-β)]

  cosα·sinβ=0.5[sin(α+β)-sin(α-β)]

  cosα·cosβ=0.5[cos(α+β)+cos(α-β)]

  sinα·sinβ=-0.5[cos(α+β)-cos(α-β)]


高考数学复合函数知识点归纳相关 文章 :

1. 2020高三数学函数知识点归纳

2. 高考数学知识点总结归纳

3. 高考数学必考知识点考点2020大全总结

4. 高考数学易混淆知识点总结精华版

5. 高中数学高考知识点 高中数学高考要点

6. 2017年高考数学函数的单调性必考知识点

7. 高中数学函数知识归纳总结

8. 高考数学必考知识点考点2020

9. 高考数学考点2020总结概括

10. 高考数学知识点口诀

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式