求lim x趋近于0+ (cos根号x)^(π/x)的极限值..

 我来答
华源网络
2022-06-26 · TA获得超过5606个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:149万
展开全部
附注:
(1)下面用到的知识至少至洛必达法则;
(2)下面用等号连接式子并非完全合适,至少更为合适的方式是用推导符号连接.
lim(x->0+)((cos(x^(1/2)))^(pi/x))
=lim(x->0+)e^(ln((cos(x^(1/2)))^(pi/x)))
=e^(lim(x->0+)ln((cos(x^(1/2)))^(pi/x)))
=e^(lim(x->0+)(pi/x)ln(cos(x^(1/2))))
=e^(lim(x->0+)(pi/x)(1-cos(x^(1/2)))(1/(1-cos(x^(1/2))))ln(1-(1-cos(x^(1/2)))))
=e^(lim(x->0+)(pi/x)(1-cos(x^(1/2)))ln(((1-(1-cos(x^(1/2)))))^(1/(1-cos(x^(1/2))))))
=e^((lim(x->0+)pi)*(lim(x->0+)(1-cos(x^(1/2)))/x)*(lim(x->0+)ln(((1-(1-cos(x^(1/2)))))^(1/(1-cos(x^(1/2)))))))
=e^(pi*(lim(x->0+)(1-cos(x^(1/2)))'/(x)')*(lim((1-cos(x^(1/2)))->0+)ln(((1-(1-cos(x^(1/2)))))^(1/(1-cos(x^(1/2)))))))
=e^(pi*(lim(x->0+)(sin(x^(1/2))*(1/2)/(x^(1/2)))/1)*lne)
=e^(pi*((1/2)*(lim(x->0+)sin(x^(1/2))/(x^(1/2))))*lne)
=e^((pi/2)*(lim((x^(1/2))->0+)sin(x^(1/2))/(x^(1/2))))
=e^((pi/2)*1)
=e^(pi/2)
答:式子=e^(pi/2).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式