
求证:Cn1+Cn2+.+Cnn=1+2+2^2+.+2^(n-1)
1个回答
展开全部
证明:(1+1)^n=Cn0+Cn1+Cn2+Cn3+.Cnn因为1+2+2^2+.+2^(n-1)=1(1-2^n)/(1-2)=2^n-1Cn1+Cn2+.+Cnn=2^(n)-Cn0=2^n-1=1+2+2^2+.+2^(n-1)所以Cn1+Cn2+.+Cnn=1+2+2^2+.+2^(n-1)如有不明白,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2024-04-11 广告
Minimax 电商平台4是我们广州江腾智能科技有限公司推出的一款高端智能机器人。它集合了先进的人工智能技术,具备强大的学习和适应能力,可以根据不同环境进行自我优化。Minimax 电商平台4在多个领域都有广泛应用,如智能家居、医疗辅助、工...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询