求微分方程 xy''=y'(lny'+1-lnx) 满足y(1)=2,y'(1)=e 的特解.

 我来答
完满且闲雅灬抹香鲸P
2022-07-01 · TA获得超过1.8万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:83.7万
展开全部
方程改为xy''--y'=y'ln(y'/x),同除以x^2得
(y'/x)'=(y'/x)*ln(y'/x)*1/x,令y'/x=z,得
dz/dx=(zlnz)/x,dz/(zlnz)=dx/x
ln(lnz)=lnx+C1,lnz=Cx,ln(y'/x)=Cx.
代入y'(1)=e得C=1,于是ln(y'x)=x
y'=xe^x,y=xe^x--e^x+D.
再代入y(1)=2得D=2,于是
解为y=xe^x--e^x+2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式