求证:定义域为R的任意函数都可以表示成一个奇函数和一个偶函数之和

 我来答
京斯年0GZ
2022-05-12 · TA获得超过6239个赞
知道小有建树答主
回答量:306
采纳率:100%
帮助的人:76.8万
展开全部
证明:假设定义域为R的函数f(x)可以表示成一个奇函数g(x)和一个偶函数h(x)的和∴
∴f(x)=g(x)+h(x).①
f(-x)=g(-x)+h(-x)
又g(-x)=-g(x),h(-x)=h(x)
∴f(-x)=-g(x)+h(x).②
由①②知,h(x)=[f(x)+f(-x)]/2,g(x)=[f(x)-f(-x)]/2
检验:h(-x)=[f(-x)+f(x)]/2=h(x)
g(x)=[f(-x)-f(x)]/2=-g(-x)
∴定义域为R的函数f(x)都可以表示成一个奇函数g(x)和一个偶函数h(x)的和
,且h(x)=[f(x)+f(-x)]/2,g(x)=[f(x)-f(-x)]/2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式