设f(x,y)=|x-y|g(x,y),其中g(x,y)在(0,0)连续且g(0,0)=0,怎么判断他是否可微...

 我来答
机器1718
2022-06-13 · TA获得超过6804个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:158万
展开全部
af/ax=lim 【f(x,0)-f(0,0)】/(x-0)=lim |x|g(x,0)/x,只有g(0,0)=0时极限才存在且为0.
同理af/ay=0,条件也是g(0,0)=0.再看
【f(x,y)-f(0,0)-x*af/ax-y*af/ay】/根号(x^2+y^2)=|x-y|g(x,y)/根号(x^2+y^2)
注意到|x-y|
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式