高一 数学 数学题目 请详细解答,谢谢! (31 17:48:49)
数列(an)是等比数列,项数是偶数,各项为正,它的所有项的和等于偶数项和的4倍,且第二项与第四项的和是第三项与第四项和的9倍,问数列(lgan)的前多少项和为最大...
数列(an)是等比数列,项数是偶数,各项为正,它的所有项的和等于偶数项和的4倍,且第二项与第四项的和是第三项与第四项和的9倍,问数列(lgan)的前多少项和为最大
展开
1个回答
展开全部
解:设等比数列的公比=q,项数=2n,n属于N正,
又数列{an}的偶数项是以a1q为首项,q的平方为公比的等比数列,且此数列共有n项,则
a1(1-q的2n次方)/(1-q)=4*a1q[1-(q平方的n次方)]/(1-q平方)
因为a不等于0,所以
(1-q的2n次方)/(1-q)=4q(1-q的2n次方)/[(1+q)(1-q)]
整理得
1+q=4q
q=1/3
由已知,又得
a1q*a1(q的3次方)=9[a1(q的平方)+a1(q的3次方)]
a1(q的平方)=9(1+q)
解之得
a1=108
当an都为大于1的时候,数列的和为最大
lgan=lg(a1+a2+a3+a4+a5)=lg(108+36+12+4+4/3)
即数列{lgan}的前5项和最大
又数列{an}的偶数项是以a1q为首项,q的平方为公比的等比数列,且此数列共有n项,则
a1(1-q的2n次方)/(1-q)=4*a1q[1-(q平方的n次方)]/(1-q平方)
因为a不等于0,所以
(1-q的2n次方)/(1-q)=4q(1-q的2n次方)/[(1+q)(1-q)]
整理得
1+q=4q
q=1/3
由已知,又得
a1q*a1(q的3次方)=9[a1(q的平方)+a1(q的3次方)]
a1(q的平方)=9(1+q)
解之得
a1=108
当an都为大于1的时候,数列的和为最大
lgan=lg(a1+a2+a3+a4+a5)=lg(108+36+12+4+4/3)
即数列{lgan}的前5项和最大
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询