聚点的意思,是不是内点+边界点,为什么聚点有可能不属于E?

 我来答
濒危物种1718
2022-06-29 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6405
采纳率:100%
帮助的人:44.3万
展开全部
集合E的聚点就是极限点,定义是包含该点的任意小球(或邻域)内都包含E的无限多个点.
例如:
1、康托集合(Cantor set)的所有的点都是聚点.
2、S是区间[2, 3]中的有理数,则[2, 3]中的所有点都是聚点.
3、集合[0, 1]与{1.5}的并集的聚点是[0, 1]的所有点,但不包括1.5该点.
4、区间(1, 2)的聚点是[1, 2]中的所有点.
以上例子中,例1和例2的集合根本不存在内点,所有的聚点都是它的边界点.例3中包含了所有内点,却没有包含边界点1.5;而例4中包含了所有的内点与边界点.
从以上例子中容易看出,开区间的端点是聚点,但是不属于该区间;一个稠密的集合中,非常容易找出不属于该集合的聚点(例2中的无理数).
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式