已知集合A={a+2,(a+1) 2 ,a 2 +3a+3},若1∈A,求实数a的取值集合.
1个回答
展开全部
因为1∈A,所以
①若a+2=1,解得a=-1,此时集合为{1,0,1},元素重复,所以不成立,即a≠-1.
②若(a+1) 2 =1,解得a=0或a=-2,当a=0时,集合为{2,1,3},满足条件,即a=0成立.
当a=-2时,集合为{0,1,1},元素重复,所以不成立,即a≠-2.
③若a 2 +3a+3=1,解得a=-1或a=-2,由①②知都不成立.
所以满足条件的实数a的取值集合为{0}.
①若a+2=1,解得a=-1,此时集合为{1,0,1},元素重复,所以不成立,即a≠-1.
②若(a+1) 2 =1,解得a=0或a=-2,当a=0时,集合为{2,1,3},满足条件,即a=0成立.
当a=-2时,集合为{0,1,1},元素重复,所以不成立,即a≠-2.
③若a 2 +3a+3=1,解得a=-1或a=-2,由①②知都不成立.
所以满足条件的实数a的取值集合为{0}.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询