f-1(x)的解释是什么?
1个回答
展开全部
f-1(x)的解释是反函数。
若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。
性质
(1)函数存在反函数的充要条件是,函数的定义域与值域是一一映射。
(2)一个函数与它的反函数在相应区间上单调性一致。
(3)大部分偶函数不存在反函数(当函数y=f(x), 定义域是{0} 且 f(x)=C (其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} )。
奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询