连续不可导的三种情况是什么?
1个回答
展开全部
连续不可导的三种情况如下。
1、函数在该点不连续,且该点是函数的第二类间断点。如y=tan(x),在x=π/2处不可导。
2、函数在该点连续,但在该点的左右导数不相等。如Y=|X|,在x=0处连续,在x处的左导数为-1,右导数为1,不相等(可导函数必须光滑),函数在x=0不可导。
3、对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。
高中函数学习方法:
1、理解函数的概念,了解映射的概念。
2、了解函数的单调性的.概念,掌握判断—些简单函数的单调性的方法。
3、了解反函数的概念及互为反函数的函数图象间的关系,会求一些简单函数的反函数。
4、理解分数指数幂的概念,掌握有理指数幂的运算性质,掌握指数函数的概念、图象和性质。
5、理解对数的概念,掌握对数的运算性质,掌握对数函数的概念、图象和性质。
6、能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。
中智咨询
2024-08-28 广告
2024-08-28 广告
在当今竞争激烈的商业环境中,企业需要不断提高自身的竞争力,以保持市场份额和增加利润。通过人效提升,企业可以更有效地利用有限的资源,提高生产力和效益,从而实现盈利目标。中智咨询提供全方位的组织人效评价与诊断、人效提升方案等数据和管理咨询服务。...
点击进入详情页
本回答由中智咨询提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询