解向量的秩为什么是n-r?

 我来答
佩奇星座达人
活跃答主

2022-01-18 · 乐于助人是我的座右铭
知道小有建树答主
回答量:3162
采纳率:98%
帮助的人:49.4万
展开全部

因为n元齐次线性方程组Ax=0的系数矩阵的秩R(A)=r<n,则解空间S的基础解系存在,且每个基础解系恰有n-r个解向量。

当A不满秩时,例如:r(A)=n-1时Ax=0,显然有一个自由变量。因此,基础解系中,解向量个数是1=n-r。

因此,基础解系中,解向量个数是1=n-r以此类推,可以发现r(A)+解向量个数=n。

解向量:

有些方程组会有无数组解,有时只有唯一解,有唯一解释叫方程组的特解;矩阵的特征值在很多地方都有用如:如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。

厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
如果一个行列式的所有r+1阶子式为0,但至少有一个r阶子式不为0,那么就称r为行列式的秩。增广矩阵的秩与一般矩阵的秩表示的几何意义相同。增广矩阵的秩与矩阵A的秩相同时,则表明增广矩阵所张成的空间与与【A】所张成的空间相同,表明了【b】在【A... 点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式