泰勒公式按幂展开的解释是什么?

 我来答
聊电子的小璇
高能答主

2022-01-15 · 用力答题,不用力生活
知道小有建树答主
回答量:3654
采纳率:100%
帮助的人:58.1万
展开全部

泰勒展开式都是幂函数。因为幂函数一旦与相应的阶乘组合,就可以在对应阶数求导后消失,只留下各阶导数值。

在这种意义上,泰勒展开并不是唯一的,因为任何在对应阶求导后能够消失并只留下导数值的函数,都可以作为泰勒展开的备胎。可惜的是,幂函数与阶乘的组合,是我们已知的唯一具有上述性质的函数,因此,这种唯一性决定了泰勒展开能够且仅能够由幂函数表示。

泰勒公式的灵魂是导数值,而非幂函数。在展开的这一点,泰勒展开式与f(x)的每一阶导数值都完全相等。而这种“各阶导数值相等”,揭示了多项式函数和它想要替代的复杂函数f(x)在每一个维度上完全相同的奇妙的事实。

泰勒公式的几何意义

泰勒公式的几何意义是利用多项式函数来逼近原函数,由于多项式函数可以任意次求导,易于计算,且便于求解极值或者判断函数的性质,因此可以通过泰勒公式获取函数的信息,同时,对于这种近似,必须提供误差分析,来提供近似的可靠性  。

除了一元泰勒公式外,多元泰勒公式的应用也非常广泛,特别是在微分方程数值解和最优化上有着很大的作用 。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式