矩阵的秩和特征值有什么关系?
展开全部
特征值与秩的关系:如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩如果矩阵不可以对角化,这个结论就不一定成立。
证明:
定理1:n阶方阵A可相似对角化的充要条件是A有n个线性无关的特征向量。
定理2:设A为n阶实对称矩阵,则A必能相似对角化。
定理3:设A为n阶实对称矩阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0恰为A的n-k重特征值。
定理4:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),则λ=0至少为A的n-k的重特征值。
定理5:设A为n阶方阵,矩阵的秩r(A)=k,(0<k<n,k为正整数),且A可相似对角化,则λ=0恰为A的n-k重特征值。
定理6:设A为n阶方阵,矩阵的秩rf(A)=k,(0<k<n,k为正整数),且A可对角化,则λ=0恰为f(A)的n-k重特征值。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询