1/根号下3+2x-x2的不定积分
1个回答
展开全部
∫[1/√(3+2x-x^2)]dx
=∫{1/√[(3-x)(1+x)]}dx
=∫{1/[(3-x)(1+x)]}√[(3-x)(1+x)]dx
=(1/4)∫[1/(3-x)+1/(1+x)]√[(3-x)(1+x)]dx
=(1/4)∫{√[(1+x)/(3-x)]+√[(3-x)/(1+x)]}dx.
令(1+x)/(3-x)=u^2,则:1+x=3u^2-xu^2,∴x(1+u^2)=3u^2-1,
∴x=(3u^2-1)/(1+u^2),
∴dx={[6u(1+u^2)-2u(3u^2-1)]/(1+u^2)^2}du=[8u/(1+u^2)^2]du.
∴∫[1/√(3+2x-x^2)]dx
=(1/4)∫(u+1/u)[8u/(1+u^2)^2]du
=2∫[(u^2+1)/u][u/(1+u^2)^2]du
=2∫[1/(1+u^2)]du
=2arctanu+C
=2arctan{√[(1+x)/(3-x)]}+C.
=∫{1/√[(3-x)(1+x)]}dx
=∫{1/[(3-x)(1+x)]}√[(3-x)(1+x)]dx
=(1/4)∫[1/(3-x)+1/(1+x)]√[(3-x)(1+x)]dx
=(1/4)∫{√[(1+x)/(3-x)]+√[(3-x)/(1+x)]}dx.
令(1+x)/(3-x)=u^2,则:1+x=3u^2-xu^2,∴x(1+u^2)=3u^2-1,
∴x=(3u^2-1)/(1+u^2),
∴dx={[6u(1+u^2)-2u(3u^2-1)]/(1+u^2)^2}du=[8u/(1+u^2)^2]du.
∴∫[1/√(3+2x-x^2)]dx
=(1/4)∫(u+1/u)[8u/(1+u^2)^2]du
=2∫[(u^2+1)/u][u/(1+u^2)^2]du
=2∫[1/(1+u^2)]du
=2arctanu+C
=2arctan{√[(1+x)/(3-x)]}+C.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询