动能定理公式是什么样的
动能定理公式
其中,Ek2表示物体的末动能,Ek1表示物体的初动能。ΔW是动能的变化,又称动能的增量,也表示合外力对物体做的总功。
1.动能定理研究的对象是单一的物体,或者是可以堪称单一物体的物体系。
2.动能定理的计算式是等式,一般以地面为参考系。
3.动能定理适用于物体的直线运动,也适应于曲线运动;适用于恒力做功,也适用于变力做功;力可以是分段作用,也可以是同时作用,只要可以求出各个力的正负代数和即可,这就是动能定理的优越性。
动能定理概念
动能具有瞬时性,是指力在一个过程中对物体所做的功等于在这个过程中动能的'变化。动能是状态量,无负值。
合外力(物体所受的外力的总和,根据方向以及受力大小通过正交法[1]能计算出物体最终的合力方向及大小) 对物体所做的功等于物体动能的变化。即末动能减初动能。
动能定理一般只涉及物体运动的始末状态,通过运动过程中做功时能的转化求出始末状态的改变量。但是总的能是遵循能量守恒定律的,能的转化包括动能、势能、热能、光能(高中不涉及)等能的变化。
动能定理公式
推导过程
分析
(1)确定研究对象,研究对象可以是一个质点(单体)也可以是一个系统。
(2)分析研究对象的受力情况和运动情况,是否是求解“力、位移与速度关系”的问题。
(3)若是,根据动能定理ΔW=ΔEk列式求解。
处理多过程问题
应用动能定理处理多过程运动问题关键在于分清整个过程有几个力做功,及初末状态的动能,采用动能定理处理问题无需考虑其具体的运动过程,只需注意初末状态即可,求往复运动的总路程及次数问题,若用牛顿定律和运动学公式求解,必须用数列求和的方法,但对于其中的某些问题求解,如用动能定理求解,可省去不少复杂的数学推演,使解题过程简化。
推导
对于匀加速直线运动有:
由牛顿第二运动定律得,
①
匀加速直线运动规律有,
②
①×②得,
外力做功 ,记,
即
对于非匀加速直线运动,
进行无限细分成n段,于是每段都可看成是匀加速直线运动(微元法思想)
对于每段运动有,
W1=Ek1-Ek0
W2=Ek2-Ek1
……
Wn=Ekn-Ek(n-1)将上式全部相加得
推导完毕