计算1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/40+2/40+...+39/40)

 我来答
白露饮尘霜17
2022-07-29 · TA获得超过1.2万个赞
知道大有可为答主
回答量:6459
采纳率:100%
帮助的人:34.2万
展开全部
1/n+2/n+……+(n-1)/n
=[1+2+……+(n-1)]/n
=[n(n-1)/2]/n
=(n-1)/2
所以
1/2+(1/3+2/3)+(1/4+2/4+3/4)+...+(1/40+2/40+...+39/40)
=(2-1)/2+(3-1)/2+……+(40-1)/2
=(1+2+……+39)/2
=[39*(39+1)/2]/2
=390
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式