求∫(√(x^2+a^2))/(x^2)

 我来答
世纪网络17
2022-08-06 · TA获得超过5946个赞
知道小有建树答主
回答量:2426
采纳率:100%
帮助的人:142万
展开全部
令x=atanu,则:√(x^2+a^2)=√[(atanu)^2+a^2]=a/cosu,dx=[a/(cosu)^2]du.
sinu=tanu/√[1+(tanu)^2]=(x/a)/√[1+(x/a)^2]=x/√(x^2+a^2),
(1+sinu)/(1-sinu)
=[1+x/√(x^2+a^2)]/[1-x/√(x^2+a^2)]
=[√(x^2+a^2)+x]/[√(x^2+a^2)-x]
=[√(x^2+a^2)+x]^2/[(x^2+a^2)-x^2]
=[√(x^2+a^2)+x]^2/a^2.
∴∫[√(x^2+a^2)/x^2]dx
=∫[(a/cosu)/(atanu)^2][a/(cosu)^2]du
=∫[(1/cosu)/(sinu)^2]du
=∫{cosu/[(sinu)^2(cosu)^2]}du
=∫{1/[(sinu)^2(cosu)^2]}d(sinu)
=∫{[(cosu)^2+(sinu)^2]/[(sinu)^2(cosu)^2]}d(sinu)
=∫[1/(sinu)^2]d(sinu)+∫[1/(cosu)^2]d(sinu)
=-1/sinu+∫{1/[(1+sinu)(1-sinu)]}d(sinu)
=-1/sinu+(1/2)∫{[(1-sinu+1+sinu)]/[(1+sinu)(1-sinu)]}d(sinu)
=-1/sinu+(1/2)∫[1/(1+sinu)]d(1+sinu)-(1/2)∫[1/(1-sinu)]d(1-sinu)
=-1/sinu+(1/2)ln(1+sinu)-(1/2)ln(1-sinu)+C
=-√(x^2+a^2)/x+(1/2)ln[(1+sinu)/(1-sinu)]+C
=(1/2)ln{[√(x^2+a^2)+x]^2/a^2}-√(x^2+a^2)/x+C
=ln[√(x^2+a^2)+x]-lna-√(x^2+a^2)/x+C
=ln[√(x^2+a^2)+x]-√(x^2+a^2)/x+C.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式