高一必修一数学题 求解~~~~急

在△ABC中,证(b^2-c^2)/a^2*sin2A+(c^2-a^2)/b^2*sin2B+(a^2-b^2)/c^2*sin2C... 在△ABC中,证 (b^2-c^2)/a^2*sin2A+(c^2-a^2)/b^2*sin2B+(a^2-b^2)/c^2*sin2C 展开
435428148
2010-07-31
知道答主
回答量:14
采纳率:0%
帮助的人:12.9万
展开全部
这样由正弦定理有:
(b^2-c^2)/a^2=(sin^2B-sin^2c)/sin^2A
=(sinB+sinC)(sinB-sinC)/sinA*sinA
=[4sin(B+C)/2*sin(B-C)/2*sin(B-c)/2*cos(B-C)/2]/sin^2A
=sin(B+C)*sin(B-C)/sin^2A
=sin(B-C)/sinA,
于是
[(b^2-c^2)/a^2]*sin2A
=2sinAcosA*sin(B-C)/sinA
=sin(B-C)cosA
=-sin(B-C)cos(B+C)
=sin2C-sin2B;

同理可得
[(c^2-a^2)/b^2]sin2B=sin2A-sin2C;
[(a^2-b^2)/c^2]sin2C=sin2B-sin2A。
于是
[(b^2-c^2)/a^2 ]*sin2A+[(c^2-a^2)/b^2]sin2B+[(a^2-b^2)/c^2]sin2C=0。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式