已知方阵满足A^2-2A+2E=0,证明A及A-3E都可逆,并求A和A-3E的逆矩阵

 我来答
机器1718
2022-08-29 · TA获得超过6865个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:163万
展开全部
因为 A^2-2A+2E=0,所以 A(A-2E) = -2E所以 A 可逆,且 A^-1 = -1/2 (A-2E).再由 A^2-2A+2E=0A(A-3E) + (A-3E) +5E = 0所以 (A+E)(A-3E) = -5E所以 A-3E 可逆,且 (A-3E)^-1 = -1/5 (A+E)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式