正弦函数、余弦函数单调性
1、正弦函数
y=sinx在[2kπ-π/2,2kπ+π/2],k∈Z,上是增函数。
在[2kπ+π/2,2kπ+3π/2],k∈Z,上是减函数。
三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]
2、余弦函数
y=cosx在[2kπ,2kπ+π],k∈Z,上是减函数。
在[2kπ+π,2kπ+2π],k∈Z,上是增函数。
余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π。
扩展资料
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
由于三角函数的周期性,它并不具有单值函数意义上的反函数。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA,即tanA=角A 的对边/角A的邻边。
同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA,即sinA=角A的对边/角A的斜边。
同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA,即cosA=角A的邻边/角A的斜边。
参考资料来源:百度百科-单调性
2024-04-02 广告