等差数列{an},{bn}的前几项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则a8/b8=多少?an/bn=多少
1个回答
展开全部
(1).
a8/b8=2a8/2b8=a1+a15 / b1+b15 = (15/2)(a1+a15) / (15/2)(b1+b15)
= S15/T15 = 2n/3n+1 = 2×15/3×15+1 = 15/23
(2)
an/bn=2an/2bn=a1+a2n-1 / b1 +b2n-1
= [(2n-1)/2](a1+a2n-1) / [(2n-1)/2](b1+b2n-1)
= S (2n-1) / T (2n-1)
= 2×(2n-1)/ [ 3 × (2n-1) + 1 ]
= 2n-1 / 3n -1
参考公式:
等差总和的公式Sn=(n/2)(a1+an)
a8/b8=2a8/2b8=a1+a15 / b1+b15 = (15/2)(a1+a15) / (15/2)(b1+b15)
= S15/T15 = 2n/3n+1 = 2×15/3×15+1 = 15/23
(2)
an/bn=2an/2bn=a1+a2n-1 / b1 +b2n-1
= [(2n-1)/2](a1+a2n-1) / [(2n-1)/2](b1+b2n-1)
= S (2n-1) / T (2n-1)
= 2×(2n-1)/ [ 3 × (2n-1) + 1 ]
= 2n-1 / 3n -1
参考公式:
等差总和的公式Sn=(n/2)(a1+an)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询