如图.过已知线段AB的两个端点,作射线AM,BN,使AM‖BN
(3)试证明:无论DC的两个端点在AM,BN上作如何移动,只要DC经过点E,AD+BC就为定值...
(3)试证明:无论DC的两个端点在AM,BN上作如何移动,只要DC 经过点E,AD+BC就为定值
展开
2个回答
展开全部
解:(1)∵AM∥BN,
∴∠MAB+∠ABN=180°,
又AE,BE分别为∠MAB、∠NBA的平分线,
∴∠1+∠3= 12(∠MAB+∠ABN)=90°,
∴∠AEB=180°-∠1-∠3=90°,
即∠AEB为直角;
(2)过E点作辅助线EF使其平行于AM,如图则EF∥AD∥BC,
∴∠AEF=∠4,∠BEF=∠2,
∵∠3=∠4,∠1=∠2,
∴∠AEF=∠3,∠BEF=∠1,
∴AF=FE=FB,
∴F为AB的中点,又EF∥AD∥BC,
根据平行线等分线段定理得到E为DC中点,
∴ED=EC;
【(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,
总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB. 】
∴∠MAB+∠ABN=180°,
又AE,BE分别为∠MAB、∠NBA的平分线,
∴∠1+∠3= 12(∠MAB+∠ABN)=90°,
∴∠AEB=180°-∠1-∠3=90°,
即∠AEB为直角;
(2)过E点作辅助线EF使其平行于AM,如图则EF∥AD∥BC,
∴∠AEF=∠4,∠BEF=∠2,
∵∠3=∠4,∠1=∠2,
∴∠AEF=∠3,∠BEF=∠1,
∴AF=FE=FB,
∴F为AB的中点,又EF∥AD∥BC,
根据平行线等分线段定理得到E为DC中点,
∴ED=EC;
【(3)由(2)中结论可知,无论DC的两端点在AM、BN如何移动,只要DC经过点E,
总满足EF为梯形ABCD中位线的条件,所以总有AD+BC=2EF=AB. 】
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询