最小二乘法拟合曲线
展开全部
最小二乘法多项式曲线是根据给定的m个点,并不要求这条曲线精确地经过这些点,而是曲线y=f(x)的近似曲线y=φ(x)。按偏差平方和最小的原则选取拟合曲线,并且采取二项式方程为拟合曲线的方法,称为最小二乘法。
为了使其尽可能反映所给数据的变化趋势,我们可以要求偏差的绝对值尽可能小,甚至是所有偏差中的最大值尽可能小。我们可以通过使选取的近似曲线在节点xi处的偏差的平方和达到最小来实现这一目标,这一原则就是最小二乘原则。
最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合,其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询