已知二次函数f(x)=ax^2+bx+1....

已知函数f(x)=ax^2+bx+1(a>0,b∈R)、设方程f(x)=x有两个实数根x1,x21、如果x1<2<x2<4,设函数f(x)的对称轴为x=x0、求证x0>-... 已知函数f(x)=ax^2+bx+1(a>0,b∈R)、设方程f(x)=x有两个实数根x1,x2
1、 如果x1<2<x2<4,设函数f(x)的对称轴为x=x0、求证x0>-1
2、 如果0<x1<2、且f(x)=x的两个实数根相差2、求实数b的取值范围

-
展开
chhf2002
2010-08-01 · TA获得超过1109个赞
知道小有建树答主
回答量:197
采纳率:0%
帮助的人:110万
展开全部

设g(x)=f(x)-x = ax^2 + (b-1) x + 1,

1、由根与系数的关系:x1+x2=(1-b)/a,x1*x2=1/a>0(a>0),所以,x1、x2同号,因为x2>2>0,所以x1>0,又2<x2<4,所以1/4<x1<1/2,9/4<x1+x2<9/2,

对称轴方程为x=x0=(x1+x2)/2∈(9/8, 9/4),所以x0>9/8>-1。

 2、g(x)=0有一个根在区间(0, 2)内,于是,g(0)*g(2)<0,

即:1*(4a+2b-1)<0,

在平面直角坐标系AOB中做出直线4a+2b-1=0的图像,如图中红色直线所示,这个不等式的解的区域在红色直线的下方(不含边界)。

由根与系数的关系:

x1+x2=(1-b)/a,x1*x2=1/a,

因为|x1-x2|=2,所以4=|x1-x2|^2=(x1-x2)^2=(x1+x2)^2-4*x1*x2=(1-b)^2/a^2-4/a,

化简,(2a+1)^2-(b-1)^2=1,

(a+1/2)^2/(1/2)^2-(b-1)^2=1,

表示的图像是一条双曲线,其渐进线为 b=-2a, b=2a+2,

所以(a, b)的轨迹是这条双曲线位于前面不等式解的区域中的部分(直线4a+2b-1=0下方部分),

前面从不等式解出的(a, b)的取值范围的边界恰好就是该双曲线的一条渐进线向右平移1/2个单位得到的,故双曲线的左支不会和直线4a+2b-1=0相交。

由图像可以判断b的取值范围形如b≤b0。直线和双曲线有1个交点,求出交点坐标即可。

双曲线方程与边界直线方程联立,

4a+2b-1 = 0, 4*a+4*a^2 = (b-1)^2,

解为a = 1/8, b = 1/4;

故b的取值范围是(-∞, 1/4)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式