初二上学期数学因式分解50题题目?

 我来答
远景教育17
2022-10-14 · TA获得超过5154个赞
知道小有建树答主
回答量:241
采纳率:0%
帮助的人:78.4万
展开全部
1.a^4-4a+3
2.(a+x)^m+1*(b+x)^n-1-(a+x)^m*(b+x)^n
3.x^2+(a+1/a)xy+y^2
4.9a^2-4b^2+4bc-c^2
5.(c-a)^2-4(b-c)(a-b)
答案1.原式=a^4-a-3a+3=(a-1)(a^3+a^2+a-3)
2.[1-(a+x)^m][(b+x)^n-1]
3.(ax+y)(1/ax+y)
4.9a^2-4b^2+4bc-c^2=(3a)^2-(4b^2-4bc+c^2)=(3a)^2-(2b-c)^2=(3a+2b-c)(3a-2b+c)
5.(c-a)^2-4(b-c)(a-b)
= (c-a)(c-a)-4(ab-b^2-ac+bc)
=c^2-2ac+a^2-4ab+4b^2+4ac-4bc
=c^2+a^2+4b^2-4ab+2ac-4bc
=(a-2b)^2+c^2-(2c)(a-2b)
=(a-2b-c)^2
1.x^2+2x-8
2.x^2+3x-10
3.x^2-x-20
4.x^2+x-6
5.2x^2+5x-3
6.6x^2+4x-2
7.x^2-2x-3
8.x^2+6x+8
9.x^2-x-12
10.x^2-7x+10
11.6x^2+x+2
12.4x^2+4x-3
解方程:(x的平方+5x-6)分之一=(x的平方+x+6)分之一
十字相乘法虽然比较难学,但是一旦学会了它,用它来解题,会给我们带来很多方便,以下是我对十字相乘法提出的一些个人见解.
1、十字相乘法的方法:十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项系数.
2、十字相乘法的用处:(1)用十字相乘法来分解因式.(2)用十字相乘法来解一元二次方程.
3、十字相乘法的优点:用十字相乘法来解题的速度比较快,能够节约时间,而且运用算量不大,不容易出错.
4、十字相乘法的缺陷:1、有些题目用十字相乘法来解比较简单,但并不是每一道题用十字相乘法来解都简单.2、十字相乘法只适用于二次三项式类型的题目.3、十字相乘法比较难学.
5、十字相乘法解题实例:
1)、 用十字相乘法解一些简单常见的题目
例1把m²+4m-12分解因式
分析:本题中常数项-12可以分为-1×12,-2×6,-3×4,-4×3,-6×2,-12×1当-12分成-2×6时,才符合本题
因为 1 -2
1 ╳ 6
所以m²+4m-12=(m-2)(m+6)
例2把5x²+6x-8分解因式
分析:本题中的5可分为1×5,-8可分为-1×8,-2×4,-4×2,-8×1.当二次项系数分为1×5,常数项分为-4×2时,才符合本题
因为 1 2
5 ╳ -4
所以5x²+6x-8=(x+2)(5x-4)
例3解方程x²-8x+15=0
分析:把x²-8x+15看成关于x的一个二次三项式,则15可分成1×15,3×5.
因为 1 -3
1 ╳ -5
所以原方程可变形(x-3)(x-5)=0
所以x1=3 x2=5
例4、解方程 6x²-5x-25=0
分析:把6x²-5x-25看成一个关于x的二次三项式,则6可以分为1×6,2×3,-25可以分成-1×25,-5×5,-25×1.
因为 2 -5
3 ╳ 5
所以 原方程可变形成(2x-5)(3x+5)=0
所以 x1=5/2 x2=-5/3
2)、用十字相乘法解一些比较难的题目
例5把14x²-67xy+18y²分解因式
分析:把14x²-67xy+18y²看成是一个关于x的二次三项式,则14可分为1×14,2×7, 18y²可分为y.18y , 2y.9y , 3y.6y
解: 因为 2 -9y
7 ╳ -2y
所以 14x²-67xy+18y²= (2x-9y)(7x-2y)
例6 把10x²-27xy-28y²-x+25y-3分解因式
分析:在本题中,要把这个多项式整理成二次三项式的形式
解法一、10x²-27xy-28y²-x+25y-3
=10x²-(27y+1)x -(28y²-25y+3) 4y -3
7y ╳ -1
=10x²-(27y+1)x -(4y-3)(7y -1)
=[2x -(7y -1)][5x +(4y -3)] 2 -(7y – 1)
5 ╳ 4y - 3
=(2x -7y +1)(5x +4y -3)
说明:在本题中先把28y²-25y+3用十字相乘法分解为(4y-3)(7y -1),再用十字相乘法把10x²-(27y+1)x -(4y-3)(7y -1)分解为[2x -(7y -1)][5x +(4y -3)]
解法二、10x²-27xy-28y²-x+25y-3
=(2x -7y)(5x +4y)-(x -25y)- 3 2 -7y
=[(2x -7y)+1] [(5x -4y)-3] 5 ╳ 4y
=(2x -7y+1)(5x -4y -3) 2 x -7y 1
5 x - 4y ╳ -3
说明:在本题中先把10x²-27xy-28y²用十字相乘法分解为(2x -7y)(5x +4y),再把(2x -7y)(5x +4y)-(x -25y)- 3用十字相乘法分解为[(2x -7y)+1] [(5x -4y)-3].
例7:解关于x方程:x²- 3ax + 2a²–ab -b²=0
分析:2a²–ab-b²可以用十字相乘法进行因式分解
x²- 3ax + 2a²–ab -b²=0
x²- 3ax +(2a²–ab - b²)=0
x²- 3ax +(2a+b)(a-b)=0 1 -b
2 ╳ +b
[x-(2a+b)][ x-(a-b)]=0 1 -(2a+b)
1 ╳ -(a-b)
所以 x1=2a+b x2=a-b
5-7(a+1)-6(a+1)^2
=-[6(a+1)^2+7(a+1)-5]
=-[2(a+1)-1][3(a+1)+5]
=-(2a+1)(3a+8);
-4x^3 +6x^2 -2x
=-2x(2x^2-3x+1)
=-2x(x-1)(2x-1);
6(y-z)^2 +13(z-y)+6
=6(z-y)^2+13(z-y)+6
=[2(z-y)+3][3(z-y)+2]
=(2z-2y+3)(3z-3y+2).
比如...x^2+6x-7这个式子
由于一次幂x前系数为6
所以,我们可以想到,7-1=6
那正好这个式子的常数项为-7
因此我们想到将-7看成7*(-1)
于是我们作十字相成
x +7
x -1
的到(x+7)·(x-1)
成功分解了因式
3ab^2-9a^2b^2+6a^3b^2
=3ab^2(1-3a+2a^2)
=3ab^2(2a^2-3a+1)
=3ab^2(2a-1)(a-1)
5-7(a+1)-6(a+1)^2
=-[6(a+1)^2+7(a+1)-5]
=-[2(a+1)-1][3(a+1)+5]
=-(2a+1)(3a+8);
-4x^3 +6x^2 -2x
=-2x(2x^2-3x+1)
=-2x(x-1)(2x-1);
6(y-z)^2 +13(z-y)+6
=6(z-y)^2+13(z-y)+6
=[2(z-y)+3][3(z-y)+2]
=(2z-2y+3)(3z-3y+2).
比如...x^2+6x-7这个式子
由于一次幂x前系数为6
所以,我们可以想到,7-1=6
那正好这个式子的常数项为-7
因此我们想到将-7看成7*(-1)
于是我们作十字相成
x +7
x -1
的到(x+7)·(x-1)
成功分解了因式
3ab^2-9a^2b^2+6a^3b^2
=3ab^2(1-3a+2a^2)
=3ab^2(2a^2-3a+1)
=3ab^2(2a-1)(a-1)
x^2+3x-40
=x^2+3x+2.25-42.25
=(x+1.5)^2-(6.5)^2
=(x+8)(x-5).
⑹十字相乘法
这种方法有两种情况.
①x^2+(p+q)x+pq型的式子的因式分解
这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和.因此,可以直接将某些二次项的系数是1的二次三项式因式分x^2+(p+q)x+pq=(x+p)(x+q) .
②kx^2+mx+n型的式子的因式分解
如果如果有k=ac,n=bd,且有ad+bc=m时,那么kx^2+mx+n=(ax+b)(cx+d).
图示如下:
a b
×
c d
例如:因为
1 -3
×
7 2
-3×7=-21,1×2=2,且2-21=-19,
所以7x^2-19x-6=(7x+2)(x-3).
十字相乘法口诀:首尾分解,交叉相乘,求和凑中
⑶分组分解法
分组分解是解方程的一种简洁的方法,我们来学习这个知识.
能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法.
比如:
ax+ay+bx+by
=a(x+y)+b(x+y)
=(a+b)(x+y)
我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难.
同样,这道题也可以这样做.
ax+ay+bx+by
=x(a+b)+y(a+b)
=(a+b)(x+y)
几道例题:
1. 5ax+5bx+3ay+3by
解法:=5x(a+b)+3y(a+b)
=(5x+3y)(a+b)
说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出.
2. x3-x2+x-1
解法:=(x3-x2)+(x-1)
=x2(x-1)+(x-1)
=(x-1)(x2+1)
利用二二分法,提公因式法提出x2,然后相合轻松解决.
3. x2-x-y2-y
解法:=(x2-y2)-(x+y)
=(x+y)(x-y)-(x+y)
=(x+y)(x-y+1)
利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决.
758²—258² =(758+258)(758-258)=1016*500=508000
还有,
1.若(2x)n−81 = (4x2+9)(2x+3)(2x−3),那么n的值是( )
A.2 B. 4 C.6 D.8
2.若9x2−12xy+m是两数和的平方式,那么m的值是( )
A.2y2 B.4y 2 C.±4y2 D.±16y2
3.把多项式a4− 2a2b2+b4因式分解的结果为( )
A.a2(a2−2b2)+b4 B.(a2−b2)2
C.(a−b)4 D.(a+b)2(a−b)2
4.把(a+b)2−4(a2−b2)+4(a−b)2分解因式为( )
A.( 3a−b)2 B.(3b+a)2
C.(3b−a)2 D.( 3a+b)2
5.计算:(−)2001+(−)2000的结果为( )
A.(−)2003 B.−(−)2001
C. D.−
6.已知x,y为任意有理数,记M = x2+y2,N = 2xy,则M与N的大小关系为( )
A.M>N B.M≥N C.M≤N D.不能确定
7.对于任何整数m,多项式( 4m+5)2−9都能( )
A.被8整除 B.被m整除
C.被(m−1)整除 D.被(2n−1)整除
8.将−3x2n−6xn分解因式,结果是( )
A.−3xn(xn+2) B.−3(x2n+2xn)
C.−3xn(x2+2) D.3(−x2n−2xn)
9.下列变形中,是正确的因式分解的是( )
A. 0.09m2− n2 = ( 0.03m+ )( 0.03m−)
B.x2−10 = x2−9−1 = (x+3)(x−3)−1
C.x4−x2 = (x2+x)(x2−x)
D.(x+a)2−(x−a)2 = 4ax
10.多项式(x+y−z)(x−y+z)−(y+z−x)(z−x−y)的公因式是( )
A.x+y−z B.x−y+z C.y+z−x D.不存在
11.已知x为任意有理数,则多项式x−1−x2的值( )
A.一定为负数
B.不可能为正数
C.一定为正数
D.可能为正数或负数或零
二、解答题:
分解因式:
(1)(ab+b)2−(a+b)2
(2)(a2−x2)2−4ax(x−a)2
(3)7xn+1−14xn+7xn−1(n为不小于1的整数)
答案:
一、选择题:
1.B 说明:右边进行整式乘法后得16x4−81 = (2x)4−81,所以n应为4,答案为B.
2.B 说明:因为9x2−12xy+m是两数和的平方式,所以可设9x2−12xy+m = (ax+by)2,则有9x2−12xy+m = a2x2+2abxy+b2y2,即a2 = 9,2ab = −12,b2y2 = m;得到a = 3,b = −2;或a = −3,b = 2;此时b2 = 4,因此,m = b2y2 = 4y2,答案为B.
3.D 说明:先运用完全平方公式,a4− 2a2b2+b4 = (a2−b2)2,再运用两数和的平方公式,两数分别是a2、−b2,则有(a2−b2)2 = (a+b)2(a−b)2,在这里,注意因式分解要分解到不能分解为止;答案为D.
4.C 说明:(a+b)2−4(a2−b2)+4(a−b)2 = (a+b)2−2(a+b)[2(a−b)]+[2(a−b)]2 = [a+b−2(a−b)]2 = (3b−a)2;所以答案为C.
5.B 说明:(−)2001+(−)2000 = (−)2000[(−)+1] = ()2000 •= ()2001 = −(−)2001,所以答案为B.
6.B 说明:因为M−N = x2+y2−2xy = (x−y)2≥0,所以M≥N.
7.A 说明:( 4m+5)2−9 = ( 4m+5+3)( 4m+5−3) = ( 4m+8)( 4m+2) = 8(m+2)( 2m+1).
8.A
9.D 说明:选项A,0.09 = 0.32,则 0.09m2− n2 = ( 0.3m+n)( 0.3m−n),所以A错;选项B的右边不是乘积的形式;选项C右边(x2+x)(x2−x)可继续分解为x2(x+1)(x−1);所以答案为D.
10.A 说明:本题的关键是符号的变化:z−x−y = −(x+y−z),而x−y+z≠y+z−x,同时x−y+z≠−(y+z−x),所以公因式为x+y−z.
11.B 说明:x−1−x2 = −(1−x+x2) = −(1−x)2≤0,即多项式x−1−x2的值为非正数,正确答案应该是B.
二、解答题:
(1) 答案:a(b−1)(ab+2b+a)
说明:(ab+b)2−(a+b)2 = (ab+b+a+b)(ab+b−a−b) = (ab+2b+a)(ab−a) = a(b−1)(ab+2b+a).
(2) 答案:(x−a)4
说明:(a2−x2)2−4ax(x−a)2
= [(a+x)(a−x)]2−4ax(x−a)2
= (a+x)2(a−x)2−4ax(x−a)2
= (x−a)2[(a+x)2−4ax]
= (x−a)2(a2+2ax+x2−4ax)
= (x−a)2(x−a)2 = (x−a)4.
(3) 答案:7xn−1(x−1)2
说明:原式 = 7xn−1 •x2−7xn−1 •2x+7xn−1 = 7xn−1(x2−2x+1) = 7xn−1(x−1)2.,1,初二上学期数学因式分解50题题目
谢谢,我跪求,我的假期作业
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式