洛必达法则是什么?
洛必达法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法。
这种方法主要是在一定条件下通过分子分母分别求导再求极限来确定未定式的值.在运用洛必达法则之前,首先要完成两项任务:
一是分子分母的极限是否都等于零(或者无穷大);
第二是分子和分母在有限的区域内是否可微分。如果满足这两个条件,则进行推导,判断推导后的极限是否存在:如果存在,则直接得到答案;如果它不存在,那么待定公式就不能用Lopida定律求解。如果是不确定的,也就是说,结果仍未决定,那么在验证的基础上继续使用洛皮达法则(Lopida's rule)。
扩展资料:
在运用洛必达法则之前,首先要完成两项任务:一是分子分母的极限是否都等于零(或者无穷大);二是分子分母在限定的区域内是否分别可导。
如果满足这两个条件,则进行推导,判断推导后的极限是否存在:如果存在,则直接得到答案;如果它不存在,那么待定公式就不能用Lopida定律求解。如果是不确定的,也就是说,结果仍未决定,那么在验证的基础上继续使用洛皮达法则(Lopida's rule)。
洛必达法则是求未定式极限的有效工具,但是如果仅用洛必达法则,往往计算会十分繁琐,因此一定要与其他方法相结合,比如及时将非零极限的乘积因子分离出来以简化计算、乘积因子用等价量替换等等。
参考资料来源:百度百科-洛必达法则