怎样证明偏导数存在?
1个回答
展开全部
用偏导数的定义来验证:
1、偏导数是通过极限来定义的,按定义写出某点(x0,y0)处偏导数的极限表达式。
2、(以对x的偏导数为例)lim[f(x,y0)-f(x0,y0)]/(x-x0)(x趋于x0)。
3、然后用极限的相关知识来考察这个极限是否存在。
4、这极限是否存在和该点处偏导数是否存在是一致的,因此证明偏导数存在的任务就转化为证明极限存在。
扩展资料:
求证偏导数存在要注意:
这类问题一般都是证明在某点处偏导数存在,注意这时切记不能使用求导公式,以一元函数为例:这是因为用求导公式计算出来的导函数f'(x)往往含有间断点,在间断点x0处f'(x)无意义。
比如:fy(x,y)是在点(x,y)关于y的偏导数,应当注意,这里x是看作常数的,如果你要求(0,0)处关于y的偏导数,应该先把x固定成x=0,即先求出fy(0,y)=[4*(y^3)*e^(y^2)]/(y^2)=4*y*e^(y^2),再以y=0代入,得到fy(0,0)=4*0*1=0。
参考资料来源:百度百科-偏导数
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询