已知A,B,C三点的坐标分别是A(3,0),B(0,3)C(sina,cosa)其中
π/2<a<(3/2)π,1,若|向量AC|=|向量BC|,求角a的值。2,若向量AC*向量BC=-1求,(2*sin²a+sin(2a)/(1+tana)的值...
π/2<a<(3/2)π,1,若|向量AC|=|向量BC|,求角a的值。2,若向量AC*向量BC=-1求,(2*sin²a+sin(2a)/(1+tana)的值
展开
3个回答
展开全部
解:
(1)
向量AC=(sinα-3,cosα),向量BC=(sinα,cosα-3)
|向量AC|=√[(sinα-3)^2+(cosα)^2]=√[(sinα)^2-6sinα+9+(cosα)^2]=√(10-6sinα)
|向量BC|=√[(sinα)^2+(cosα-3)^2]=√[(sinα)^2+(cosα)^2-6cosα+9]=√(10-6cosα)
∵|向量AC|=|向量BC|
∴√(10-6sinα)=√(10-6cosα)
整理并化简得:sinα-cosα=(√2)*sin(α-π/4)=0,即sin(α-π/4)=0.
∵π/2<α<(3/2)π
∴π/4<(α-π/4)<5π/4
∴α-π/4=π,则α=5π/4.
(2)向量AC*向量BC
=(sinα-3)*sinα+cosα* (cosα-3)
=(sinα)^2-3sinα+(cosα)^2-3cosα
=1-3(sinα+cosα)
∵向量AC*向量BC=-1
∴1-3(sinα+cosα)=-1,解得:sinα+cosα=2/3.
∴(sinα+cosα)^2=(sinα)^2+2sinαcosα+(cosα)^2=1+2sinαcosα=4/9
∴2sinαcosα=-5/9.
∴[2(sinα)^2+sin(2α)]/(1+tanα)
=[2(sinα)^2+2sinαcosα]/(cosα/cosα+sinα/cosα)
=[2(sinα)^2+2sinαcosα]/[(sinα+cosα)/cosα]
=cosα*[2(sinα)^2+2sinαcosα]/(sinα+cosα)
=[2(sinα)^2*cosα+2sinα*(cosα)^2]/(sinα+cosα)
=2sinαcosα(sinα+cosα)/(sinα+cosα)
=2sinαcosα
=-5/9.
我不知道对不对,如有错误请指出,谢谢!
(1)
向量AC=(sinα-3,cosα),向量BC=(sinα,cosα-3)
|向量AC|=√[(sinα-3)^2+(cosα)^2]=√[(sinα)^2-6sinα+9+(cosα)^2]=√(10-6sinα)
|向量BC|=√[(sinα)^2+(cosα-3)^2]=√[(sinα)^2+(cosα)^2-6cosα+9]=√(10-6cosα)
∵|向量AC|=|向量BC|
∴√(10-6sinα)=√(10-6cosα)
整理并化简得:sinα-cosα=(√2)*sin(α-π/4)=0,即sin(α-π/4)=0.
∵π/2<α<(3/2)π
∴π/4<(α-π/4)<5π/4
∴α-π/4=π,则α=5π/4.
(2)向量AC*向量BC
=(sinα-3)*sinα+cosα* (cosα-3)
=(sinα)^2-3sinα+(cosα)^2-3cosα
=1-3(sinα+cosα)
∵向量AC*向量BC=-1
∴1-3(sinα+cosα)=-1,解得:sinα+cosα=2/3.
∴(sinα+cosα)^2=(sinα)^2+2sinαcosα+(cosα)^2=1+2sinαcosα=4/9
∴2sinαcosα=-5/9.
∴[2(sinα)^2+sin(2α)]/(1+tanα)
=[2(sinα)^2+2sinαcosα]/(cosα/cosα+sinα/cosα)
=[2(sinα)^2+2sinαcosα]/[(sinα+cosα)/cosα]
=cosα*[2(sinα)^2+2sinαcosα]/(sinα+cosα)
=[2(sinα)^2*cosα+2sinα*(cosα)^2]/(sinα+cosα)
=2sinαcosα(sinα+cosα)/(sinα+cosα)
=2sinαcosα
=-5/9.
我不知道对不对,如有错误请指出,谢谢!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询