已知抛物线过点(0,8),求抛物线解析式
1个回答
展开全部
知道抛物线与x轴交点为(x1,0),(x2,0)
就可以设出抛物线的交点式
y=a(x-x1)(x-x2)
然后再根据其他条件解出a即可
本例中,x1=-2,x2=1,
设交点式:y=a(x+2)(x-1)
因为抛物线还过C(2,8)将其代入
得: a*(2+2)*(2-1)=8
所以a=2
∴抛物线的解析式为
y=2(x+2)(x-1)
即y=2x²+2x-4
就可以设出抛物线的交点式
y=a(x-x1)(x-x2)
然后再根据其他条件解出a即可
本例中,x1=-2,x2=1,
设交点式:y=a(x+2)(x-1)
因为抛物线还过C(2,8)将其代入
得: a*(2+2)*(2-1)=8
所以a=2
∴抛物线的解析式为
y=2(x+2)(x-1)
即y=2x²+2x-4
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询