什么是函数的驻点?

 我来答
八卦娱乐分享
高能答主

2023-07-02 · 开开心心聊八卦娱乐。
八卦娱乐分享
采纳数:1009 获赞数:72003

向TA提问 私信TA
展开全部

函数的驻点的定义:函数的一阶导数为0的点(驻点也称为稳定点,临界点)。

对于多元函数,驻点是所有一阶偏导数都为零的点。即在“这一点”,函数的输出值停止增加或减少。驻点不一定是极值点,极值点也不一定是驻点。驻点(红色)与拐点(蓝色),这图像的驻点都是局部极大值或局部极小值。

对于一维函数的图像,驻点的切线平行于x轴。对于二维函数的图像,驻点的切平面平行于xy平面。驻点并不是点,而是和极值点相似,代表着这一点的x值。

驻点和拐点的区别:

函数的平稳点的术语可能会与函数图的给定投影的临界点相混淆。

“临界点”更为通用:功能的平稳点对应于平行于x轴的投影的图形的临界点。另一方面,平行于y轴的投影图的关键点是导数不被定义的点(更准确地趋向于无穷大)。因此,有些作者将这些预测的关键点称为“关键点”。

拐点是导数符号发生变化的点。拐点点可以是相对最大值或相对最小值(也称为局部最小值和最大值)。如果函数是可微分的,那么拐点是一个固定点;然而并不是所有的固定点都是拐点。

如果函数是两次可微分的,则不转动点的固定点是水平拐点。例如,函数x^3在x=0处有一个固定点,也是拐点,但不是转折点。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式