2是质数还是合数
2是质数。
质数(Prime number,又称素数),指在大于1的自然数中,除了1和该数自身外,无法被其他自然数整除的数(也可定义为只有1与该数本身两个正因数的数)。
质数又称素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数。
素数对于数论与一般数学的重要性来自于“算术基本定理”。该定理指出,每个大于1的整数均可写成一个以上的素数之乘积,且除了质约数的排序不同外是唯一的。
在数字1至6间,数字2、3与5为素数,1、4与6则不是素数。1不是素数,其理由见下文。2是素数,因为只有1与2可整除该数。
接下来,3亦为素数,因为1与3可整除3,3除以2会余1。因此,3为素数。不过,4是合数,因为2是另一个(除1与巧差缺4外)可整除4的数:4 = 2 · 2。
5又是个素数:数字2、3与4均不能整除5。接下来,6会被2或3整除,因为6 = 2 · 3。
因此,6不是素数。右图显示12不是素数:12 = 3 · 4。不存在大于2的偶数为素数,因为依据定义,任何此类数字n均至少有三个不同的约数,即1、2与n。这意指n不是素数。
因此,“奇素孝辩数”系指任何大于2的素数。类似地,当使用一般的十进位制时,所有大于5的素数,其尾数均为1、3、7或9,因为偶数为2的倍数,尾数为0或5的数字为5的倍数。
若庆胡n为一自然数,则1与n会整除n。因此,素数的条件可重新叙述为:一个数字为素数,若该数大于1,且没有2, 3, ..., n − 1。