定积分的值与函数的值是否相等?

 我来答
教育解题小达人
高能答主

2023-07-05 · 专注教育领域,阳光创作,为大家解除疑惑!
教育解题小达人
采纳数:14 获赞数:11978

向TA提问 私信TA
展开全部

假设区间A是[x,x+T],区间B是[y,y+T],首先讨论x<y<x+T的情况。
区间A可分为x,y],[y,x+T]两个部分;区间B可分为[y,x+T],[x+T,y+T]两个部分。
[x,y]的定积分显然和[x+T,y+T]的定积分相等。所以区间A和区间B的定积分相等。
若y不在区间A内,取z=y+n*T,且x<=z<x+T。取区间C是[z,z+T],则区间A和区间C的定积分相等,C和B又相等。所以A和B相等。

以下是的相关介绍:

对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫作周期函数,不为零的常数T叫作这个函数的周期。事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。

设f(x)是定义在数集M上的函数,如果存在非零常数T具有性质:f(x+T)=f(x),则称f(x)是数集M上的周期函数,常数T称为f(x)的一个周期。如果在所有正周期中有一个最小的,则称它是函数f(x)的最小正周期。

由定义可得:周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期,譬如狄利克雷函数。

以上资料参考百度百科——周期函数

图为信息科技(深圳)有限公司
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
匿名用户
2023-07-05
展开全部
定积分是一个数,函数值是变动的,所以两者应该是不等的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式