2个回答
展开全部
看到含ln的式子,应用分部积分:
∫ln(x+√(1+x²))dx
=xln(x+√(1+x²))-∫xd[ln(x+√(1+x²))]
=xln(x+√(1+x²))-∫[x/(x+√(1+x²))]*(1+2x/2√(1+x²))dx
=xln(x+√(1+x²))-∫[x/(x+√(1+x²))]*(x+√(1+x²)/√(1+x²)dx
=xln(x+√(1+x²))-∫x/√(1+x²)dx
=xln(x+√(1+x²))-1/2*∫d(x²+1)/√(1+x²)
=xln(x+√(1+x²))-√(1+x²)+C
∫ln(x+√(1+x²))dx
=xln(x+√(1+x²))-∫xd[ln(x+√(1+x²))]
=xln(x+√(1+x²))-∫[x/(x+√(1+x²))]*(1+2x/2√(1+x²))dx
=xln(x+√(1+x²))-∫[x/(x+√(1+x²))]*(x+√(1+x²)/√(1+x²)dx
=xln(x+√(1+x²))-∫x/√(1+x²)dx
=xln(x+√(1+x²))-1/2*∫d(x²+1)/√(1+x²)
=xln(x+√(1+x²))-√(1+x²)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询