极限的等价无穷小怎么求?

 我来答
简单生活Eyv
2023-07-30 · TA获得超过1万个赞
知道小有建树答主
回答量:1547
采纳率:100%
帮助的人:24.9万
展开全部

首先对X-sinX求导

显然(X-sinX)'=1-cosx

而1-cosx为0.5x²的等价无穷小

即X-sinX的等价无穷小为0.5x²的原函数

对0.5x²积分得到1/6 x^3

所以X-sinX的等价无穷小为1/6 x^3

极限

数学分析的基础概念,它指的是变量在一定的变化过程中,从总的来说逐渐稳定的这样一种变化趋势以及所趋向的数值(极限值)。极限方法是数学分析用以研究函数的基本方法,分析的各种基本概念(连续、微分、积分和级数)都是建立在极限概念的基础之上。

然后才有分析的全部理论、计算和应用.所以极限概念的精确定义是十分必要的,它是涉及分析的理论和计算是否可靠的根本问题。历史上是柯西(Cauchy,A.-L.)首先较为明确地给出了极限的一般定义。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式