一道三角函数题目

在三角形ABC中,a,b,c分别是角A,B,C的对边,A-C=∏÷3,求sinB是π÷3... 在三角形ABC中,a,b,c 分别是角A,B,C的对边,A-C=∏÷3,求sinB
是π÷3
展开
匿名用户
2010-08-01
展开全部
少条件吧?"a+c=2b"
正弦定理得:
sinA +sinC = 2sinB
2sin[(A+C)/2] * cos[(A-C)/2] = 2sinB
sin[(A+C)/2] * cos(π/6) = sinB
因为A + B + C = π
所以:(A+C)/2 = π/2 - B/2
cos(B/2) * √3/2 = 2sin(B/2)cos(B/2)
显然B/2不等于π/2,cos(B/2)不等于0
所以:
sin(B/2) = √3/4
cos(B/2) = √13/4
sinB = 2sin(B/2)cos(B/2) = √39/8
哆啦a梦好友
2010-08-01
知道答主
回答量:5
采纳率:0%
帮助的人:6856
展开全部
应该是1|2吧
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式