
一个初二的几何证明题。。
在任意△ABC中作∠A的角平分线AD交BC于D点E、F分别是AB与AC上的点,连接DEDF且∠EDF+∠BAF=180°请证明DE=DF...
在任意△ABC中 作∠A的角平分线AD交BC于D点 E、F分别是AB与AC上的点,连接 DE DF 且∠EDF+∠BAF=180° 请证明 DE=DF
展开
展开全部
过D做DM,⊥AB,DN⊥AC
AD是角平分线
DM=DN
∠BAF+∠MDN =180°(四边形内角和)
∠BAF+∠EDF=180°
∠MDN=∠EDF
∠MDE=∠NDF
∠DMA=∠DNC=90°
△DME≌△DN F
DE =DF
AD是角平分线
DM=DN
∠BAF+∠MDN =180°(四边形内角和)
∠BAF+∠EDF=180°
∠MDN=∠EDF
∠MDE=∠NDF
∠DMA=∠DNC=90°
△DME≌△DN F
DE =DF
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询