有一等腰三角形纸片,若能从一个底角的顶点出发,将其剪成两个等腰三角形纸片,则原等腰三角?C
2个回答
展开全部
解:①如图(1),
∵AB=AC,AD=BD=BC,
∴∠ABC=∠C=∠BDC,∠A=∠ABD,
∵∠BDC=2∠A,
∴∠ABC=2∠A,
∵∠A+∠ABC+∠C=180°,
∴5∠A=180°,
∴∠A=36°.
②如图(2)
AD=BD,BC=CD,设∠A=β,则∠ABD=β,
∴∠1=2β=∠2,
∵∠ABC=∠C,
∴∠C=∠2+∠β,
∴∠C=3β,
∴7β=180°,
∴β=
180°
7
;
即∠A=
180°
7
;
③如图(3)
AD=DB=DC,
则∠ABC=90°,不可能.
故原等腰三角形纸片的顶角为36°或
180°
7
.
∵AB=AC,AD=BD=BC,
∴∠ABC=∠C=∠BDC,∠A=∠ABD,
∵∠BDC=2∠A,
∴∠ABC=2∠A,
∵∠A+∠ABC+∠C=180°,
∴5∠A=180°,
∴∠A=36°.
②如图(2)
AD=BD,BC=CD,设∠A=β,则∠ABD=β,
∴∠1=2β=∠2,
∵∠ABC=∠C,
∴∠C=∠2+∠β,
∴∠C=3β,
∴7β=180°,
∴β=
180°
7
;
即∠A=
180°
7
;
③如图(3)
AD=DB=DC,
则∠ABC=90°,不可能.
故原等腰三角形纸片的顶角为36°或
180°
7
.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |