
初二期末考试题急急急急急急急急急急急急急急急急急急急急急急(要完整过程)凑分的滚
如图,等边三角形ABC的边长为6厘米,动点P从点A出发以2厘米/秒的速度沿AC方向向终点C运动,同时动点Q从点C出发以1厘米/秒的速度沿CB方向向终点B运动,设P、Q两点...
如图,等边三角形ABC的边长为6厘米,动点P从点A出发以2厘米/秒的速度沿AC方向向终点C运动,同时动点Q从点C出发以1厘米/秒的速度沿CB方向向终点B运动,设P、Q两点运动时间为t秒(0<t<3)点Q、P在运动的过程中,是否存在一时刻t,使△PCQ是直角三角形?若存在,求出此时t的值
除了证△BCP是直角三角形,然后证△PCQ和△PCQ相似,还有那种方法,跪求······急急急急急急急急急急急急急急急急急急急急急急,凑分的滚 展开
除了证△BCP是直角三角形,然后证△PCQ和△PCQ相似,还有那种方法,跪求······急急急急急急急急急急急急急急急急急急急急急急,凑分的滚 展开
展开全部
解:
若PCQ是直角三角形,因为角C是固定的=60°
有两种情况:
一、∠CPQ=90°
CP的长度=CA-Vt=6-2t
CQ的长度=CQ=t
根据30°所对的直角边=斜边一半
6-2t=1/2t
5/2t=6
t=2.4s
第二种情况:
CQP=90°
CP=6-2t
CQ=t
t=1/2(6-2t)
2t=6-2t
4t=6
t=1.5
回答完毕!
若PCQ是直角三角形,因为角C是固定的=60°
有两种情况:
一、∠CPQ=90°
CP的长度=CA-Vt=6-2t
CQ的长度=CQ=t
根据30°所对的直角边=斜边一半
6-2t=1/2t
5/2t=6
t=2.4s
第二种情况:
CQP=90°
CP=6-2t
CQ=t
t=1/2(6-2t)
2t=6-2t
4t=6
t=1.5
回答完毕!
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询