一道高一的数学计算题
(1+(2^(-1/8)))*(1+(2^(-1/4)))*(1+(2^(-1/2)))答案是1/(2-(2^(7/8))...
(1+(2^(-1/8)))*(1+(2^(-1/4)))*(1+(2^(-1/2)))
答案是1/(2-(2^(7/8)) 展开
答案是1/(2-(2^(7/8)) 展开
1个回答
展开全部
设t=2^(1/8),则2^(1/4)=t^2, 2^(1/2)=t^4, t^8=2
(1+(2^(-1/8)))*(1+(2^(-1/4)))*(1+(2^(-1/2)))
=(1+1/2^(1/8))*(1+1/2^(1/4))*(1+1/2(1/2))
=(1+1/t)(1+1/t^2)(1+1/t^4)
=(t+1)(t^2+1)(t^4+1)/t^7
=(t^7+t^6+t^5+t^4+t^3+t^2+t+1)/t^7
=(t^8-1)/(t^7*(t-1))
=(t^8-1)/(t^8-t^7)
=(2-1)/(2-2^(7/8))
=1/(2-(2^(7/8))
(1+(2^(-1/8)))*(1+(2^(-1/4)))*(1+(2^(-1/2)))
=(1+1/2^(1/8))*(1+1/2^(1/4))*(1+1/2(1/2))
=(1+1/t)(1+1/t^2)(1+1/t^4)
=(t+1)(t^2+1)(t^4+1)/t^7
=(t^7+t^6+t^5+t^4+t^3+t^2+t+1)/t^7
=(t^8-1)/(t^7*(t-1))
=(t^8-1)/(t^8-t^7)
=(2-1)/(2-2^(7/8))
=1/(2-(2^(7/8))
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询