展开全部
由半角公式可得:sin2x =(1-cos2x)/2
由二倍角公式可得:sinxcosx =sin2x/2
所以y =sinx(sinx+cosx)
= sin2x+ sinxcosx
=(1-cos2x)/2+ sin2x/2
=1/2+1/2*(sin2x-cos2x)
=1/2+(根号2)/2*[(根号2)/2sin2x-(根号2)/2cos2x]
=1/2+(根号2)/2*(cosπ/4sin2x-sinπ/4cos2x)
=1/2+(根号2)/2*sin(2x-π/4)
由y =sinx的性质可知sin(2x-π/4)在x∈[0,π/2]的值域是[-(根号2)/2,1]
所以y =sinx(sinx+cosx)在x∈[0,π/2]的值域是[0,1/2+(根号2)/2]
由二倍角公式可得:sinxcosx =sin2x/2
所以y =sinx(sinx+cosx)
= sin2x+ sinxcosx
=(1-cos2x)/2+ sin2x/2
=1/2+1/2*(sin2x-cos2x)
=1/2+(根号2)/2*[(根号2)/2sin2x-(根号2)/2cos2x]
=1/2+(根号2)/2*(cosπ/4sin2x-sinπ/4cos2x)
=1/2+(根号2)/2*sin(2x-π/4)
由y =sinx的性质可知sin(2x-π/4)在x∈[0,π/2]的值域是[-(根号2)/2,1]
所以y =sinx(sinx+cosx)在x∈[0,π/2]的值域是[0,1/2+(根号2)/2]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询