数学-分式

若a/(X^2-YZ)=b/(Y^2-ZX)=c/(Z^2-XY)求证:aX+bY+cZ=(X+Y+Z)(a+b+c)详细过程,拜托... 若a/(X^2-YZ)=b/(Y^2-ZX)=c/(Z^2-XY)
求证:aX+bY+cZ=(X+Y+Z)(a+b+c)
详细过程,拜托
展开
jim_won
2010-08-05 · TA获得超过3493个赞
知道小有建树答主
回答量:455
采纳率:100%
帮助的人:243万
展开全部
证明:首先,令a/(X^2-YZ)=b/(Y^2-ZX)=c/(Z^2-XY) = m (用换元法)

所以,上式变形为
a = m(X^2-YZ)
b = m(Y^2-ZX)
c = m(Z^2-XY)

所以,aX+bY+cZ = m(X^2-YZ)*X + m(Y^2-ZX)*Y + m(Z^2-XY)*Z

= m(X^3+Y^3+Z^3 - 3XYZ)

= m [X^3+(X^2)Y+(X^2)Z + Y^3+(Y^2)X+(Y^2)Z + Z^3+(Z^2)X+(Z^2)Y
-(X^2)Y-(X^2)Z -(Y^2)X-(Y^2)Z -(Z^2)X-(Z^2)Y -3XYZ]

= m [X^3+(X^2)Y+(X^2)Z + Y^3+(Y^2)X+(Y^2)Z + Z^3+(Z^2)X+(Z^2)Y
-(X^2)Y-XY^2-XYZ -(Y^2)Z-YZ^2-XYZ -(Z^2)X-ZX^2-XYZ]

= m [X^2(X+Y+Z) + Y^2(X+Y+Z) + Z^2(X+Y+Z) - XY(X+Y+Z) - YZ(X+Y+Z) - ZX(X+Y+Z)]

= (X+Y+Z)[m(X^2-YZ) + m(Y^2-ZX) + m(Z^2-XY)]

=(X+Y+Z)(a+b+c)

即,aX+bY+cZ=(X+Y+Z)(a+b+c)
(证毕)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式