数学问题~~帮忙!谢谢!!
三角形ABC中,D为边BC上一点,BD=33,sinB=5/13,cos∠ADC=3/5,求AD要过程,谢谢啦...
三角形ABC中,D为边BC上一点,BD=33,sinB=5/13,cos∠ADC=3/5,求AD
要过程,谢谢啦 展开
要过程,谢谢啦 展开
展开全部
解答:根据∠B分两种情况:
⑴当∠B为锐角时,点D在BC之间,此时cos∠B=12/13,sin∠ADC=4/5,
sin∠BAD=sin(∠ADC-∠B)
=sin∠ADCcos∠B-cos∠ADCsin∠B
=33/65
根据正弦定理AD/sin∠B=BD/sin∠BAD 得AD=25
⑵当∠B为钝角时,点D在BC之外,此时cos∠B=-12/13,sin∠ADC=4/5,
sin∠BAD=sin(∠B-∠ADC)
=-sin(∠ADC-∠B)
=-sin∠ADCcos∠B+cos∠ADCsin∠B
=63/65
根据正弦定理AD/sin(π-∠B)=BD/sin∠BAD 得AD=13.
所以AD=25,或者AD=13.
⑴当∠B为锐角时,点D在BC之间,此时cos∠B=12/13,sin∠ADC=4/5,
sin∠BAD=sin(∠ADC-∠B)
=sin∠ADCcos∠B-cos∠ADCsin∠B
=33/65
根据正弦定理AD/sin∠B=BD/sin∠BAD 得AD=25
⑵当∠B为钝角时,点D在BC之外,此时cos∠B=-12/13,sin∠ADC=4/5,
sin∠BAD=sin(∠B-∠ADC)
=-sin(∠ADC-∠B)
=-sin∠ADCcos∠B+cos∠ADCsin∠B
=63/65
根据正弦定理AD/sin(π-∠B)=BD/sin∠BAD 得AD=13.
所以AD=25,或者AD=13.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询