高一几何数学题
1.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积之比是多少?2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为多少?3.一个长...
1.已知一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积之比是多少?
2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为多少?
3.一个长方形的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则这个球的表面积是多少?
4.E、F、G、H分别是正方体ABCD-A'B'C'D'的棱BC、CC'、C'D'、AA'的中点,求证:(1)GE平行平面BB'D'D;(2)平面BDH平行平面B'D'H';
如果答案详细清楚,再追加分数! 展开
2.已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为多少?
3.一个长方形的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则这个球的表面积是多少?
4.E、F、G、H分别是正方体ABCD-A'B'C'D'的棱BC、CC'、C'D'、AA'的中点,求证:(1)GE平行平面BB'D'D;(2)平面BDH平行平面B'D'H';
如果答案详细清楚,再追加分数! 展开
展开全部
1、设正方形边长为a,侧面积为a²,圆柱的全面积为:2π(a/2π)²+a²,所以全面积与侧面积之比为:(1/2π+1):1
2、要求球的表面积,首先就是要求球半径。正四棱柱的底面积为:16/4=4,那么边长就是2了。高的一半是2底面对边的一半是根号2,从那个特殊三角形由勾股定理可知球半径为根号6,那么球的面积就是4πR²,就是24π了
3、和第二题同理的,就是要求球半径,最终可得14π
4、设I为B'C'的中点,连接EI,GI,因为EI//BB'D'D,IG//BB'D'D,EI和IG相交,所以面EIG//面BB'D'D(过程就不写了),所以面EIG上的线GE也//BB'D'D
2、要求球的表面积,首先就是要求球半径。正四棱柱的底面积为:16/4=4,那么边长就是2了。高的一半是2底面对边的一半是根号2,从那个特殊三角形由勾股定理可知球半径为根号6,那么球的面积就是4πR²,就是24π了
3、和第二题同理的,就是要求球半径,最终可得14π
4、设I为B'C'的中点,连接EI,GI,因为EI//BB'D'D,IG//BB'D'D,EI和IG相交,所以面EIG//面BB'D'D(过程就不写了),所以面EIG上的线GE也//BB'D'D
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询