高中数学。平面向量

设V是已知平面M上所有向量的集合,对于映射f:V→V,a向量∈V,记a向量的象为f(a).若映射f:V→V满足:对所有a向量,b向量∈V及任意实数λ,μ都有f(λa向量+... 设V是已知平面M上所有向量的集合,对于映射f:V→V,a向量∈V,记a向量的象为f(a).若映射f:V→V满足:对所有a向量,b向量∈V及任意实数λ,μ都有f(λa向量+μb向量)=λf(a向量)+μf(b向量),则f称为平面M上的线性变换。求证:

(1)对a向量∈V设f(a向量)=2a向量,则f是平面M上的线性变换;

(2)设f是平面M上的线性变换,a向量,b向量∈V,若a向量,b向量共线,则f(a向量),f(b向量)也共线。
展开
百度网友3917afa
2010-08-09 · TA获得超过296个赞
知道答主
回答量:102
采纳率:0%
帮助的人:0
展开全部
(1):
设a=(x1,y1),b=(x2,y2)
则对f有
f(λa+μb)=f((λ*x1+μ*x2,λ*y1+μ*y2))=(2λ*x1+2μ*x2,2λ*y1+2μ*y2)=λf(a)+μf(b)
(2):
有a=x*b
因为f(λa向量+μb向量)=λf(a向量)+μf(b向量)
所以f(λa)=λf(a)成立(μ=0)
所以f(a)=f(x*b)=x*f(b)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式