设椭圆C:x^2/a^2+y^2/2=1(a>0)的左右焦点分别为F1,F2,A是椭圆C上的一点,且

设椭圆C:x^2/a^2+y^2/2=1(a>0)的左右焦点分别为F1,F2,A是椭圆C上的一点,且向量AF2×向量F1F2=0,坐标原点O到直线AF1的距离为1/3|O... 设椭圆C:x^2/a^2+y^2/2=1(a>0)的左右焦点分别为F1,F2,A是椭圆C上的一点,且向量AF2×向量F1F2=0,坐标原点O到直线AF1的距离为1/3|OF1| (1)求椭圆C的方程 (2)设Q是椭圆C上的一点都过点Q的直线l交x轴于点P(-1,0),交y轴于点M,若向量MQ=2倍向量QP,求直线l的方程 展开
匿名用户
2014-01-04
展开全部
由条件可知 F1F2垂直AF2
设O到AF1的距离为OH
由三角形F1OH相似于三角形AF2F1知
AF2/AF1=1/3
AF2+AF1=2a
AF2=a/2
故(c,+-a/2)在椭圆上代入可得
a^2=4
x^2/4+y^2/2=1
设l为y=k(x+1)
则与y轴交点为M(0,k)
设Q(x1,y1)
QM^2=x1^2+(y1-k)^2
QF^2=(x1+1)^2+y1^2
QM^2/QF^2=4
x1=-1,1/3
代入可得k
匿名用户
2014-01-04
展开全部
设M(x1,y1),N(x2,y2)
联立直线椭圆,得:
(1+2k²)x² - 4k²x+2k²-4=0
x1+x2=4k²/(1+2k²),x1x2=(2k²-4)/(1+2k²)
|MN|=√[(x1-x2)²+(y1-y2)²]
=√{ (x1-x2)² + [k(x1-1) - k(x2-1)]² }
=√[(x1-x2)² + k²(x1-x2)²]
=√[(1+k²)(x1-x2)²]
=√{ (1+k²)[(x1+x2)² - 4x1x2]
=√{ (1+k²)[16k^4/(1+2k²)² - 4(2k²-4)/(1+2k²) ] }
=√[(1+k²)(24k²+16)/(1+2k²)² ]
A点到直线距离为
h=|k|/√(1+k²)
∴S=(1/2)·h·|MN|
=(1/2)·[|k|/√(1+k²)] ·√[(1+k²)(24k²+16)/(1+2k²)² ]
=(1/2)·|k|·√[(24k²+16)/(1+2k²)²]
=√10/3
即:|k|·√[(24k²+16)/(1+2k²)²] = 2√10/3
两边平方,得:(24k^4 + 16k²)/(1+2k²)² = 40/9
即:7k^4 - 2k² - 5=0
解得:k²=1或-5/7 (舍去)
∴k²=1
∴k=±1
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式